Attention in Hindsight: Using Video-Stimulated Recall as a Novel Approach to Capturing Fluctuations in Self-Reported Attentional Engagement

Samantha Ayers-Glassey, Dr. Effie J. Pereira, Dr. Jeffrey D. Wammes, & Dr. Daniel Smilek

INTRODUCTION

Typically, intermittent thought probes are presented throughout an attention task to capture fluctuations in self-reported introspective attentional engagement\(^1\)\(^2\). However, this approach can be intrusive during ecological studies (e.g., during live lectures)\(^1\). Thus, we evaluated video-stimulated recall\(^6\) as a less-intrusive means of capturing moment-to-moment attentional engagement retrospectively.

METHOD

Two 15-min videos, one inherently more-engaging and one inherently less-engaging, were presented to participants.

Participants rated their subjective attentional engagement during the videos via ten introspective probes. Then, they watched ten short excerpts from those videos and rated their attentional engagement after-the-fact via ten retrospective probes.

Participants were instructed to watch the video and rate their attentional engagement during the video; then, they watched ten short excerpts and rated their attentional engagement after watching each excerpt.

RESULTS

At a time lag of zero, average cross-correlation coefficients were significantly different from zero for the more-engaging (\(p < .001, d = .59\)) and less-engaging video conditions (\(p < .001, d = .78\)). These results did not significantly differ between the two video conditions (\(p = .11\)).

Thus, strong concordance was observed between the introspective and retrospective measures of attentional engagement.

CONCLUSION

Video-stimulated recall is a promising new avenue for capturing temporally precise ratings of subjective attention.

For more information:
• Contact S. Ayers-Glassey at s.ayersglassey@outlook.com
• Further analyses being presented by Dr. E.J. Pereira during Talk Session 15B

\(r = .23\) at time lag of 0

\(r = .34\) at time lag of 0

\(r = .59\) at time lag of 0
